Mapping Genetically Compensatory Pathways from Synthetic Lethal Interactions in Yeast
نویسندگان
چکیده
BACKGROUND Synthetic lethal genetic interaction analysis has been successfully applied to predicting the functions of genes and their pathway identities. In the context of synthetic lethal interaction data alone, the global similarity of synthetic lethal interaction patterns between two genes is used to predict gene function. With physical interaction data, such as protein-protein interactions, the enrichment of physical interactions within subsets of genes and the enrichment of synthetic lethal interactions between those subsets of genes are used as an indication of compensatory pathways. RESULT In this paper, we propose a method of mapping genetically compensatory pathways from synthetic lethal interactions. Our method is designed to discover pairs of gene-sets in which synthetic lethal interactions are depleted among the genes in an individual set and where such gene-set pairs are connected by many synthetic lethal interactions. By its nature, our method could select compensatory pathway pairs that buffer the deleterious effect of the failure of either one, without the need of physical interaction data. By focusing on compensatory pathway pairs where genes in each individual pathway have a highly homogenous cellular function, we show that many cellular functions have genetically compensatory properties. CONCLUSION We conclude that synthetic lethal interaction data are a powerful source to map genetically compensatory pathways, especially in systems lacking physical interaction information, and that the cellular function network contains abundant compensatory properties.
منابع مشابه
Gene function prediction from congruent synthetic lethal interactions in yeast
We predicted gene function using synthetic lethal genetic interactions between null alleles in Saccharomyces cerevisiae. Phenotypic and protein interaction data indicate that synthetic lethal gene pairs function in parallel or compensating pathways. Congruent gene pairs, defined as sharing synthetic lethal partners, are in single pathway branches. We predicted benomyl sensitivity and nuclear mi...
متن کاملSynthetic Lethality between Gene Defects Affecting a Single Non-essential Molecular Pathway with Reversible Steps
Systematic analysis of synthetic lethality (SL) constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic int...
متن کاملFeature Identification of Compensatory Gene Pairs without Sequence Homology in Yeast
Genetic robustness refers to a compensatory mechanism for buffering deleterious mutations or environmental variations. Gene duplication has been shown to provide such functional backups. However, the overall contribution of duplication-based buffering for genetic robustness is rather small. In this study, we investigated whether transcriptional compensation also exists among genes that share si...
متن کاملTwo Novel Related Yeast Nucleoporins Nupl70p and Nup157p: Complementation with the Vertebrate Homologue Nup155p and Functional Interactions with the Yeast Nuclear Pore-Membrane Protein Pom152p
We have taken a combined genetic and biochemical approach to identify major constituents of the yeast nuclear pore complex (NPC). A synthetic lethal screen was used to identify proteins which interact genetically with the major pore-membrane protein Pom152p. In parallel, polypeptides present in similar amounts to Pom152p in a highly enriched preparation of yeast NPCs have been characterized by ...
متن کاملA comparative genomic approach for identifying synthetic lethal interactions in human cancer.
Synthetic lethal interactions enable a novel approach for discovering specific genetic vulnerabilities in cancer cells that can be exploited for the development of therapeutics. Despite successes in model organisms such as yeast, discovering synthetic lethal interactions on a large scale in human cells remains a significant challenge. We describe a comparative genomic strategy for identifying c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008